
Journal of Computational Physics 214 (2006) 491–504

www.elsevier.com/locate/jcp
Modelling multi-viscosity systems with dissipative
particle dynamics

D.C. Visser *, H.C.J. Hoefsloot, P.D. Iedema

Faculty of Science, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands

Received 23 December 2004; received in revised form 14 September 2005; accepted 28 September 2005
Available online 10 November 2005
Abstract

Dissipative particle dynamics (DPD) is a particle-based simulation technique. It is applicable on time and length scales
in-between those typical for molecular modelling and continuum mechanics. These features make DPD an interesting tool
in the area of multiphase flows. So far, multiphase DPD simulations were restricted to fluids with the same viscosity,
because it was unclear how one could model phases with a different viscosity together. Here, we show how to deal with
more than one viscosity in the system. The viscosity of a DPD fluid can be controlled with the friction factor, an input
parameter in DPD that characterises the strength of the drag force between interacting particles. So, in a multiphase sys-
tem each fluid has its own friction factor, yielding the viscosity of that fluid. Now, the problem is to define the friction
factor for the interaction between particles of unlike fluids. This factor has a significant effect on flow dynamics, but lacks
a related physical property such as interfacial tension or solubility to specify its value. Three methods are presented to cal-
culate the friction factor between particles of unlike fluids. One of these methods only involves the friction factors of the
individual fluids and is of most practical use in real applications. The methods are validated for steady and unsteady flow
of two adjacent immiscible fluids. Results from these two-phase test cases are consistent with theory. This opens the door
to more extensive modelling of multi-viscosity systems with DPD.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Microscopic phenomena play a key role in the dynamic behaviour of multiphase systems. The molecular
conformation affects, for instance, the miscibility and interface dynamics of species. Breakup and coales-
cence of fluid portions involve pressure gradients and flow on a scale equal to the thickness of the interface.
The macroscopic description of conventional continuum-based simulation techniques is often insufficient to
model such complex microscopic processes. On the other hand, detailed molecular modelling of multiphase
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flow is computationally too intensive. Simulation techniques applicable between a microscopic and macro-
scopic scale are, therefore, particularly useful in this area. A particle-based form of such a mesoscopic tech-
nique is dissipative particle dynamics or DPD. Initially this coarse grained approach was introduced by
Hoogerbrugge and Koelman [1] to study colloidal suspensions [2]. Meanwhile, it has been employed in
many other problems involving polymers [3–5], phase separation [6,7], interface dynamics [8] and mem-
branes [9].

DPD applied to multiphase systems is mainly concerned with phase separation and interfacial processes
with phases that repel each other. To our knowledge, no publications exist on systems containing phases of
different viscosity. In real multiphase systems the phases differ in viscosity. Apart from that, viscosity and dif-
ferences in viscosity between one fluid and another have a strong influence on the dynamic behaviour. It has
distinct practical implications, for instance, on the mixing behaviour of fluids. The ability to deal with viscosity
differences is therefore essential for realistic modelling of such systems. The viscosity of a DPD fluid can be
controlled by increasing or decreasing the drag force between interacting particles. The desired viscosity of
a fluid is, thus, associated to a specific drag interaction between the particles of that fluid. However, the fluids
in a multiphase system do not only interact with themselves but also with one another. How to define the drag
force for this kind of interactions is, as yet, an unresolved issue.

In this paper we study the effect of the drag between unlike fluids in a multiphase system. We show that the
choice of this drag force is not arbitrary, since its large impact on flow dynamics. Three different methods are
presented to define an appropriate drag interaction between unlike fluids. The first method is an exact one
derived from a solution of the flow profile, and is, thus, of little practical use. The second is an approximation
based on the assumption that the velocity gradient is constant near the interface. It requires the, often difficult
to determine, position of the interface. The third, and most simple, method depends on input parameters
alone. Computer experiments show that this last method works just as well as the other two and is, therefore,
preferred in real applications.

2. Dissipative particle dynamics algorithm

In the DPD method, the system under consideration is represented by a set of interacting particles. A DPD
particle is interpreted as a small fluid package that represent the collective dynamic behaviour of the molecules
it contains. The basis of the method consists of calculating and updating the positions and impulses of all par-
ticles over time. This is done according Newton�s second law of motion and using the modified velocity-
Verlet algorithm as presented by Groot and Warren [7]. The force two particles i and j exert on each other
is pairwise additive and consists of a dissipative (FD

ij ), a random (FR
ij ) and a conservative part (FC

ij)
f ij ¼ FD
ij þ FR

ij þ FC
ij . ð1Þ
The total force acting on a particle i is the sum of all fij forces it experiences from particles within a certain cut-
off radius rc. Here, rc is set to 1 and taken as unit of length. Body forces are imposed simply by adding it as an
extra force to each individual particle.

The dissipative or drag force acts as a resistance against relative motion and depends on the velocity dif-
ference between particles. This force is, therefore, closely related to the viscosity of the fluid. Eq. (2) gives
the mathematical expression for this force, where rij = |ri � rj|, r̂ij ¼ ðri � rjÞ=rij and vij = vi � vj. The strength
of the drag force is determined by the friction factor c
FD
ij ¼ �cxDðrijÞðr̂ij � vijÞr̂ij. ð2Þ
The random force introduces the Brownian-like, fluctuating character of molecules and is given by Eq. (3),
where the factor r represents the fluctuation amplitude and fij is a random number drawn from a uniform
distribution with zero mean and Dt�1 variance, where Dt is the time step in the simulation
FR
ij ¼ rfijx

RðrijÞr̂ij. ð3Þ
The conservative force is a soft repulsive force representing the effective potential between the particles. The
expression for this force is given by Eq. (4), where the repulsion factor aij is the maximum repulsion between a
pair of interacting particles
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FC
ij ¼ aijx

CðrijÞr̂ij. ð4Þ
The x�s appearing in all three forces are weight functions that take into account the dependency on the inter-
action distance between particles. These weight functions go to zero when rij approaches the cut-off radius rc.
Español and Warren [10] showed that the correct thermostat is obtained when the following fluctuation–
dissipation theorem is satisfied:
xDðrijÞ ¼ ½xRðrijÞ�2; kBT ¼ mr2=2c; ð5Þ

where kBT is the temperature in the system and m the particle mass. Simulations in this paper are performed in
an isothermal system with m = 1 for all particles and weight functions xR = xC = (1 � rij/rc) [7].

3. Viscosity of a DPD fluid

The transport properties of a DPD fluid cannot be set as input parameters themselves, but instead they fol-
low as measurable quantities resulting from a chosen set of DPD input parameters. Expressing these proper-
ties in terms of the input parameters beforehand has been the topic of several DPD studies [1,2,7,11]. Marsh
et al. [11] were able to derive a relation for the viscosity, depending on the input parameters temperature kBT,
number density n, particle mass m, friction factor c and cut-off radius rc. In our case (rc and m equal to 1) their
relation reads as follows:
l ¼ 45kBT
4pc

þ 2pn2c
1575

; ð6Þ
where the first part is the kinetic contribution lK to the viscosity, related to particle diffusion, and the second
part is the dissipative contribution lD, related to the friction between particles. In this relation, the contribu-
tion from the conservative forces is not taken into account. Although some discrepancy may exist between this
theoretical prediction and simulations [11–14], it shows qualitatively how the viscosity depends on the different
input parameters.

The friction factor c in Eq. (6) is a suitable input parameter to control the viscosity of a DPD fluid. In a
system of a certain density and temperature, for example, one can tune the viscosity to the desired value by
adjusting the friction factor. This is demonstrated in Fig. 1(a), where the viscosity predicted with Eq. (6) is
plotted against the friction factor for a system of n = 10 at different temperatures. For low values of the fric-
tion factor the viscosity is largely determined by the kinetic part in Eq. (6). At higher values of the friction
factor the kinetic contribution diminishes and the dissipative part in Eq. (6) starts to dominate the viscosity,
as shown in Fig. 1(b). Here, we want to explore this last parameter region where lD > lK, a region which
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previously has been identified as the liquid-like or collective dynamic regime [15,16]. According to Marsh et al.
the viscosity scales linearly with the friction factor in this region.

4. Multiple viscosities in DPD

If the fluids in a multiphase system differ in viscosity one friction factor no longer suffices. Then, each fluid
has its own specific drag behaviour and a friction factor cij must be defined for all different types of interac-
tions separately, that is, interactions between particles i and j of like and unlike fluids. In a comparable way the
repulsion factor aij is specified for the interaction between different species in a multiphase system (see for in-
stance [6,7]). Then, the repulsion between particles of the same fluid determines the compressibility of that
fluid and the repulsion between particles of different fluids sets their interfacial tension. Note besides, that
through the fluctuation–dissipation theorem in Eq. (5) each friction factor cij automatically leads to the def-
inition of a corresponding fluctuation amplitude rij.

In a two-phase system of fluid A and B it is obvious that the friction factor for the interaction between par-
ticles of type A (cAA) determines the viscosity of fluid A. The same is true for the friction factor between par-
ticles of fluid B (cBB) and its viscosity. However, the physical interpretation of the drag between particles of
different fluids is less obvious, which makes it more difficult to specify the friction factor cAB for the interaction
between type A and B particles. The friction between unlike fluids will probably affect the viscosity as well, but
to which extent or scale is a priori unknown. In order to study the effect of this unlike friction factor we model
the adjacent flow of two immiscible Newtonian fluids driven by a body force. Here, we follow the idea de-
scribed in [17] to model Poiseuille flow with periodic boundary conditions. The body force in the adjacent fluid
layers points in opposite direction and generates a steady flow with zero velocity on the interfaces. The ana-
lytical solution of the velocity profile is known for this stationary periodic Poiseuille flow [18] and will serve as
a bench mark in our study. Before we present our results we give an overview of the computational details.

4.1. Computational details

The periodic Poiseuille flow simulations are performed with a set of 4800 particles in a rectangular box of
sizes 8 · 10 · 6 (n = 10) and kBT = 0.5. Half of the particles are of fluid type A and half of fluid type B. The
friction factor cAA is set to 9.0, which gives fluid A a dynamic viscosity of 3.63 ± 0.02. A 10 times higher vis-
cosity is obtained for fluid B when cBB is set to 109.2. Both viscosities are measured from a single-phase peri-
odic Poiseuille flow simulation [17]. Note, here, that the viscosity does not scale exactly linearly with the
friction factor. This is caused by the kinetic contribution to the viscosity, which is still relatively high for fluid
A. In reality it is even higher than predicted by Eq. (6). The fluids are placed next to each other by filling the
left half of the box with the particles of type A and the right half with the particles of type B.

Periodic Poiseuille flow is induced by imposing a body force fb
A on fluid layer A in the positive z-direction

and a body force fb
B on fluid layer B in the negative z-direction. It forces the fluids in opposite direction and

allows periodic boundaries in all directions as shown in [17]. A steady flow with zero velocity on the interfaces
will develop when the absolute force on fluid layer A and B is equal, i.e. the net force on the system is zero.
Expressing the mass of a layer in terms of density times volume this condition is met when
� fb
A

fb
B

¼ W B

W A

; ð7Þ
where WA is the width of fluid layer A and WB the width of fluid layer B. Note that the terms for density,
height and depth drop out of the equation, since they are the same for both layers. When Eq. (7) holds the
analytical solution of the stationary velocity profile Vz in each layer is given by [18]
/ ¼ 1� n2 ð8Þ

written in the dimensionless variables
/ ¼ 8lV z

nfbW 2
; n ¼ 2x� W

W
; ð9Þ
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where l is the dynamic viscosity, fb the body force and x the position in the layer of width W. In the present
situation WA = WB = 4 and we set the magnitude of the body force on fluid layer A to 9.075 · 10�2. Then, the
body force on fluid layer B follows from Eq. (7) as �9.075 · 10�2. According to Eq. (8) these settings lead to a
maximum absolute velocity V max

z of 0.5 in the system. The time step Dt is chosen such that Dt 6 0.1/c, which
keeps the drift of the equilibrium temperature within 2% [19]. The simulated stationary velocity profiles are
determined after steady-state is reached. They are obtained by dividing the system in 40 slabs and averaging
the velocity in each slab over a time span of 200.

Two interfaces are present in the x-direction, one in the middle of the simulation box and one on the peri-
odic boundary. If simple fluids without interfacial tension are used, the DPD model is nothing more than a
particle-based (macroscopic) flow solver that obeys the Navier–Stokes equations [1]. In such an ideal situation
the simulated velocity profile should, thus, correspond to Eq. (8), which enables verification of the results. Be-
sides, when tension effects at the interface are absent it is possible to study the sole effect of the friction factor
on flow dynamics. Both, evidently, very useful characteristics in the present study. To avoid tension effects we
define a single repulsion factor in the system, equal for all type of interactions. Here, we use a repulsion factor
of a = 75kBT/n, approximately yielding the compressibility of water [7]. A consequence of this uniform repul-
sion is that fluid A and B are completely miscible, which will frustrate the intended nature of our two-phase
flow problem. Therefore, particles that cross the interface undergo a specular reflection. This keeps fluids A
and B separated, as if they were immiscible, and preserves a sharp interface with a fixed position without
affecting the flow.

4.2. Periodic Poiseuille flow of two similar fluids

To show that the specular reflections at the interface have no effect on the flow we performed the periodic
Poiseuille flow simulation, described in Section 4.1, with two fluids of type A. Since the two fluids are sim-
ilar we can define a single friction factor (c = 9.0) for all type of interactions, as if the system contains a
single phase. To proof that our system is in the regime where the Navier–Stokes equations are valid we dou-
bled the system size in the x-direction to Lx = 16, divided the body force by four and repeated the periodic
Poiseuille flow simulation with two fluids of type A. The resulting stationary velocity profiles are plotted in
Fig. 2 together with the analytic solution given by Eq. (8). The measurement error is within 1% of V max

z ,
which is about the size of the symbols. Clearly, there is no effect of system size, since both simulated profiles
are on top of the analytic solution. This is also observed when the two fluids are of type B. Thus, we may
conclude that the system we study is correctly described by the Navier–Stokes equations. The smooth profile
at the interfaces indicates that the specular reflections do not affect the flow.
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Fig. 2. Velocity profiles for stationary periodic Poiseuille flow of two similar immiscible fluids. The dotted line marks the position of the
interface in the middle of the system.
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Fig. 3. Velocity profiles obtained with different cAB-values for stationary periodic Poiseuille flow of two dissimilar immiscible fluids.
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4.3. Periodic Poiseuille flow of two dissimilar fluids

The friction a DPD particle exerts on another particle has a microscopic background and, therefore, de-
pends on the type of fluid a particle represents. In a two-phase system of fluid A and B the specific friction
between particles of fluid A is denoted by cAA, and between fluid B particles by cBB. When it is assumed that
no additional chemical interaction exists between fluid A and B, the correct friction factor between A and B
particles is expected to have a value in-between cAA and cBB. To explore the effect of the unlike friction factor
cAB we consider two extreme cases: (1) the friction between unlike particles is set equal to the friction between
particles of the less viscous fluid A, cAB = cAA, or (2) it is set equal to that of the more viscous fluid B,
cAB = cBB. Thirdly, the arithmetic mean of these extremes is applied, cAB ¼ 1

2
ðcAA þ cBBÞ. All three cases are

tested for the periodic Poiseuille flow problem described in Section 4.1.
The resulting stationary velocity profiles are plotted in Fig. 3 together with the analytical solution. Again,

the measurement error is about the size of the symbols. First of all, the distinct difference between the profiles
of the extreme cases shows that the flow field is indeed sensitive for changes in cAB. Evidently, the friction be-
tween the two adjacent fluids has an impact on the velocity distribution. Furthermore, none of the applied
values for cAB produces the correct velocity profile. Deviations up to 25% of the analytical values are observed.
Since interfacial tension, boundary and size effects are absent in the system studied, the friction factor between
unlike fluids is responsible for these large deviations. This stresses the importance of the unlike friction factor
and points out that accurate modelling of multi-viscosity systems relies on its correct value. The analytical
velocity profile lies between those of the extreme cases. This proves that the correct unlike friction factor
has indeed a value in-between the friction factors of the pure fluids. However, it is not simply given by the
arithmetic mean.
5. The lever rule

A relation for the friction factor between two unlike fluids A and B can be found when we zoom in on
the interaction across the interface between a particle i of fluid A and j of fluid B. Assume a correct flow
field, so particles i and j are (on average) on the analytical velocity profile, as illustrated schematically in
Fig. 4. Now, suppose that fluid B on the right of the interface is similar to fluid A, as if the systems con-
tains a single phase. Then, the flow pattern around the interface will be symmetrical (see Fig. 2). In this
hypothetical situation, the particle on the position of j is denoted by j* and is, now, (on average) on the ana-
lytical velocity profile for this single phase situation, represented by the dashed line in Fig. 4. The interac-
tion of particle i with particles j or j* results both in the correct velocity of i. The strength of these
interactions is, thus, equal. This is true when particles j and j* exert the same drag force on particle i,



Fig. 4. Schematic drawing of particles interacting across the interface of two adjacent fluids. The particles are on the analytical velocity
profile.
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i.e. FD
ij ¼ FD

ij� . Using Eq. (2) this leads to the following expression for the friction factor between i of fluid A
and j of fluid B:
cij ¼ cij� �
vij�

vij
. ð10Þ
Since cij� ¼ cAA, an input parameter, Eq. (10) gives a relation for the friction factor between unlike fluids that
can be solved when vij� and vij are known. If there exists an analytical solution for the velocity distribution in
the system it is possible to calculate vij� and vij, and solve Eq. (10). This implies that under these circumstances
we can define an unlike friction factor that produces the correct flow profile.

An analytical solution exists for the periodic Poiseuille flow problem described in Section 4.1 and is given by
Eq. (8). Substituting this analytical solution for the velocity into Eq. (10) and using Eq. (7) we get
cij ¼ cii �
hi þ hj

hi þ li
lj
� hj

; ð11Þ
where h is a function that depends on the position x of a particle in the fluid layer and the width W of that
layer
hi ¼ xi � ðxi=W i � 1Þ. ð12Þ

When the dissipative forces are dominant, the kinetic contribution to the viscosity is negligible. Assuming this
is true for fluids A and B, we can replace the viscosity terms in Eq. (11) by the dissipative part lD of Eq. (6)
and derive the following relation for the friction factor between unlike fluids:
cij ¼
hi þ hj

hi=cii þ hj=cjj

. ð13Þ
Since cij = cji, Eq. (13) conserves the important pairwise additive character, fij = �fji, of the interparticle
forces. Note that cij goes to cii for hj! 0 and to cjj for hi! 0, in fact, implying that the relation in Eq.
(13) represents a kind of lever rule for the friction factor between unlike fluids. Such a cij -lever rule can be
derived, in similar ways, for other kind of flow situations, provided that a solution of the velocity distribution
is available. When applied to all unlike interactions across the interface, the cij -lever rule should lead to the
desired shear stress between the different fluids and the correct flow profile.

To validate the lever rule of Eq. (13) simulations are performed using the same system as described in Sec-
tion 4.1. Fig. 5 compares the stationary velocity profile obtained with the lever rule to the analytical solution.
The profiles obtained for the extreme cases cAB = cAA and cAB = cBB are shown as well. The effect of the dif-
ferent cAB�s is very clear. For cAB = cAA and cAB = cBB the relative error in the simulated velocity is unaccept-
able, above 10% in a large part of the system. The velocity profile obtained with cAB from the lever rule of Eq.
(13) shows, however, excellent agreement with the analytical solution.
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6. What if the solution of the flow profile is unknown?

The procedure described in Section 5 yields the true value of the unlike friction factor when viscosity is
dominated by dissipative forces. However, it requires (a priori) a solution of the velocity profile. For some
simple flow situations analytical solutions are available. Often the flow in multiphase systems is very complex,
containing, for instance, irregular interfaces with a time-dependent shape and position. Then, the velocity dis-
tribution cannot be solved, which makes it impossible to derive a cij -lever rule. Here, we present two methods
for calculating the unlike friction factor when the solution of the flow profile is unknown. Both methods are
tested under the same conditions as the cij -lever rule in the periodic Poiseuille flow experiment described in
Section 4.1.

6.1. Constant gradient method

When it is assumed that the velocity profile is linear near the interface, the shear stress left and right of the
interface are equal and given by
� l � dV z

dx

� �
left

¼ � l � dV z

dx

� �
right

. ð14Þ
Then, the velocity difference vij between two interacting particles can be expressed in terms of the constant
velocity gradient and the distance of these particles to the interface. With the help of Eq. (14) this approach
makes it possible to solve Eq. (10) without knowing the exact analytical solution explicitly and is referred to as
the constant gradient method. A relation similar to Eq. (13) is derived, only now hi = Dxi, where Dx is the abso-
lute distance of a particle to the interface. This means that the unlike friction factor only depends on the dis-
tance of interacting particles to the interface. The interface in our periodic Poiseuille flow experiment has a
fixed and predefined position, so it is not difficult to determine this distance. In most situations, however,
the interface moves and is it necessary to determine its position in time with some kind of tracking technique.
Fig. 6 shows that the stationary velocity profile obtained with the constant gradient method agrees well with
the analytic solution and lever rule result.

6.2. Mean value method

The constant gradient method described in the previous section requires the position of the interface. In
some special cases this position is known, but otherwise it must be tracked. Numerous tracking techniques
are possible, varying in complexity and computational load. Nevertheless, pinpointing the exact location of
the interface is difficult, especially for highly deformable and irregular interfaces in 3D-space. Besides, one
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of the attractive features of DPD in the area of multiphase flow is its particle-based nature, meaning that phase
behaviour arises from the interacting particles alone and the position of the interface is irrelevant. When the
unlike friction factor is related to the position of the interface, however, this feature is lost. Then, the precision
of localizing the exact position of the interface influences the reliability of the DPD model in simulating mul-
tiphase flows, a well-known drawback in continuum-based techniques. A relation for the unlike friction factor
that depends only on the friction factors of the pure fluids rather than on the distance to the interface is, there-
fore, highly desirable.

As a first option in this respect one can calculate an average friction factor Æcijæ with
hciji ¼
R rc

0

R 0

Dxj�rc
cij dDxi dDxjR rc

0

R 0

Dxj�rc
dDxi dDxj

; ð15Þ
where cij is the relation for the unlike friction factor that comes from the constant gradient method. This elim-
inates Dxi and Dxj, leading to a relation that only involves the friction factors of the pure fluids. A second
option is suggested by the fact that the analytical velocity profile in Fig. 3 lies in-between the profiles of
the extreme cases cAB = cAA and cAB = cBB. It implies that a cAB-value, somewhere between these extremes,
exists that leads to agreement with the true solution. This value is not the arithmetic mean of cAA and cBB

as shown previously in Section 4.3, but may be an average of some other kind. The general relation for
calculating a mean value between a friction factor cii and cjj is given by
Mp ¼
1

2
c p

ii þ c p
jj

� �� �1=p

; ð16Þ
returning the arithmetic mean for power p = 1. Taking a closer look at Eq. (13) we see that it simplifies to the
relation of the harmonic mean p = �1 when hi = hj for all ij-interactions. Consequently, we may take this as a
hint at the harmonic mean. We decided to test Eq. (16) for powers ranging from p = �2 to p = 1 in the peri-
odic Poiseuille flow experiment. In addition, the average value Æcijæ calculated with Eq. (15) is tested. The best
agreement with the analytical solution is achieved when the unlike friction factor is given by the harmonic
mean M�1, which is in accordance with the form of the cij -lever rule. Hence, the unlike friction factor of
the mean value method is given by the harmonic mean from now on. The velocity profile obtained with
the harmonic mean is also plotted in Fig. 6. Again, the comparison is good.

7. Validation of the methods

Three methods are derived to calculate the friction factor between unlike fluids in a two-phase system. All
three methods are tested for the fully developed periodic Poiseuille flow of two adjacent immiscible fluids
A and B. Both fluids are well within the collective dynamic regime and differ a factor 10 in viscosity. In this
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section, we study the reliability of the methods at different dynamic regimes and viscosity ratios. In addition,
the methods are employed and tested for instationary flows.

7.1. The dynamic regime

In Section 5, we derived the cij -lever rule, a relation for the friction factor between particles of unlike fluids
that is based on the analytical solution of the flow field and assuming that the viscosity scales linearly with the
friction factor. This assumption is true when the kinetic contribution to the viscosity lK is negligible as com-
pared to the dissipative contribution lD. The same assumption is applied in the constant gradient and mean
value method presented in Section 6. According to Eq. (6), the kinetic contribution to the viscosity of the fluids
used so far is 5.25% and 0.04% for fluid type A and B, respectively. Surprisingly, all three methods still work
properly at this relatively high kinetic contribution for fluid type A. Here, we test to which extent our assump-
tion is still valid, and the methods reliable, by varying the dynamic regime of the fluids in the system.

Simulations are performed with the periodic Poiseuille flow experiment described in Section 4.1 for six dif-
ferent two-phase systems. The temperature and friction factors of the two fluids in each system are given in
Table 1. Going from left to right in the table the kinetic contribution to the viscosity increases. In all systems,
the viscosity of fluid A and B is kept constant at a value of 3.63 and 36.3, respectively. Since the kinetic con-
tribution to the viscosity of fluid B remains negligible (<0.2%), we focus on the dynamic regime of the less
viscous fluid A expressed as the ratio lD/l. The reliability of the cij -lever rule, constant gradient and mean
value method is validated by determining the root-mean-square (RMS) error of the simulated stationary
velocity distribution in fluid A, defined as
Table
Param

kBT
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cBB

Fig. 7.
of the
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNðDV z=V max
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s
; ð17Þ
where N is the number of slabs left of the interface and DVz the deviation of the simulated velocity from the
analytical solution in a slab. Fig. 7 shows that the RMS error increases (exponentially) for all three methods
when the ratio lD/l decreases and kinetic forces become more dominant. This trend was to be expected, while
1
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the assumption that the viscosity scales linearly with the friction factor becomes less valid. Now, the dynamic
regime at which the applied methods can be considered reliable depends on the error one is willing to accept.
When accepting an error in the velocity equal to 5% of V max

z , the methods remain applicable down to
lD/l = 0.85 according Fig. 7, which corresponds to a kinetic contribution to the viscosity of less than 15%.
Apparently, the methods are only useful in a small range of dynamic regimes. It corresponds, however, to
the typical conditions used in most simulations as noted before [16].

7.2. The viscosity ratio

The viscosity ratio lB/lA of the fluids A and B used so far is 10. Here, we investigate if the performance
of the three methods introduced depends on this ratio. To this end, periodic Poiseuille flow simulations are
performed at viscosity ratios ranging from 2 to 100. The viscosity ratio is varied by changing the viscosity of
fluid B, using the input parameter cBB. The simulation results are, again, evaluated in terms of the RMS
error of the velocity distribution in fluid A, given by Eq. (17). No significant increase of the RMS error
is observed. Apparently, the performance of the methods is not influenced by the viscosity ratio between
the fluids.
7.3. Time-dependent flow

In this section, the performance of the cij -lever rule, constant gradient and mean value method is studied for
time-dependent flow. We model the development of the velocity profile for periodic Poiseuille flow of two
adjacent immiscible fluids that are initially at rest. The velocity distribution for unsteady Poiseuille flow of
a single fluid can be solved theoretically [18] and is given in dimensionless form by
/ ¼ 1� n2 � 32

p3

X1
q¼0

ð�1Þq

ð2qþ 1Þ3
cos

ð2qþ 1Þpn
2

� �
exp

�ð2qþ 1Þ2p2s
4

" #
; ð18Þ
where s = 4m Æ t/W2 with m the kinematic viscosity. Our two-phase flow problem transforms into two single
phase situations when the velocity on the interface remains zero, and allows us to use Eq. (18) as a bench
mark, here. If we consider two adjacent layers of fluid A and B, the velocity on the interface stays zero if
the net force on fluid A and B counterbalance one another at all times. This condition can only be met
when the dimensionless time s is equal for the flow in both fluid layers and adds an extra term to Eq.
(7) to give
� fb
A

fb
B

¼ W B

W A

¼
ffiffiffiffiffi
mB

mA

r
; ð19Þ
where the variables in the two adjacent fluid layers are denoted by a subscript.
The unsteady two-phase flow simulations are performed in a large rectangular box of sizes 12 · 40 · 25

with a system of n = 10, kBT = 0.5, cAA = 9.0 and cBB = 42.0. This parameter setting results in a viscosity
ratio mB/mA = 4 between the fluids. To maintain a zero velocity on the interface the width of fluid layer B
should be twice the width of layer A according Eq. (19), which is the case when WA = 4.0 and WB = 8.0.
The body force fb

A, acting on fluid A and pointing in the z-direction, is set to 9.075 · 10�2 so that V max
z ¼ 0:5

according Eq. (8). The body force fb
B acting on fluid B follows from Eq. (19). Although the theoretical solu-

tion of the velocity is known for the time-dependent flow process, we employ the cij -lever rule derived for
the stationary situation. While the solution of the stationary flow profile is given by Eq. (8), the lever rule is,
again, given by Eq. (13). In Fig. 8, the instationary velocity profiles obtained with the cij -lever rule, constant
gradient and mean value method are compared with the theoretical solution at three points in time. The
simulated profiles are obtained by measuring the instantaneous velocity in the 40 slabs dividing the system.
For clarity reasons, we plotted, however, only half of the data points. The error in the velocity measure-
ments is reduced to the size of the symbols used in Fig. 8 by averaging over 10 simulation runs. The agree-
ment with theory is again very good for all three methods, which proves their validity for instationary
situations.
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Fig. 8. Development of the velocity profile for periodic Poiseuille flow of two immiscible fluids at time s = 0.15, 0.30 and 0.60.
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8. Real interfaces

In our simulations thus far all particles have the same affinity with each other, regardless of their type. The
adjacent fluids in the two-viscosity test cases are, therefore, miscible and have to be kept separated artificially
by means of specular reflections in the interface. The reason to do so is to avoid interfacial effects so that we
can easily identify the effects related to the unlike friction factor and compare our results to theory. In the
previous sections, we studied these effects and established three methods to define a suitable value for the un-
like friction factor: the lever rule, the constant gradient and mean value method. Here, we like to test these
three multi-viscosity methods in a more realistic situation with interfacial tension. This is done by increasing
the repulsion between the unlike fluids so that a (real) self-supporting interface will evolve. Depending on its
strength, a positive interfacial tension will lead to depletion of particles at the interface [7,20], and we expect a
certain influence on fluid dynamics.

To validate the three methods in the context of the natural interface that is now created, we simulate the
fully developed periodic Poiseuille flow of two adjacent fluids A and B. All settings are identical to those in
Section 4.1 with the one exception that the repulsion between unlike particles at the interface is now twice
the normal bulk repulsion, aAB = 2a. This difference in repulsion between like and unlike particles results
in an interfacial tension of 5.90 ± 0.05, as determined from the pressure tensor [20], which keeps the fluids
separated. To maintain a straight interface located in the middle of the simulation box a specular reflection
prevents the particles from diffusing across. Only few particles are subject to these moves; about 5% of the
particles within the interaction radius of the interface per unit of time.
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Fig. 9. Velocity profiles obtained for stationary periodic Poiseuille flow of two immiscible fluids separated by a real interface.



D.C. Visser et al. / Journal of Computational Physics 214 (2006) 491–504 503
The stationary velocity profiles obtained with the three methods are plotted in Fig. 9. An analytical solution
is unavailable for this more complex (mesoscopic) situation with interfacial tension. Therefore, we compare the
results of our two-viscosity simulations to those where the fluids have the viscosity of fluid A or B, respectively.
The flow pattern in fluid A should correspond to the case where both fluids have the viscosity of fluid A;
cBB = cAA. In fluid B the flow pattern should correspond to the case where both fluids have the viscosity of fluid
B; cAA = cBB. The velocity slip at the interface shows clearly the effect of interfacial tension on the flow. Note
that this slip is exactly identical to that of the single-viscosity situations. Therefore, they must be interpreted as
real interfacial effects that should not be ascribed to the methods we propose here. The results of the three meth-
ods agree well with those of the single-viscosity cases. The same agreement is observed in simulations with a
more moderate interfacial tension. It proves that the methods derived for the ideal situation sketched in Section
4.1 are applicable to real interfaces as well. For comparison, the profile obtained with an unlike friction factor
given by the arithmetic mean is plotted. Again, the arithmetic mean shows a large deviation.

9. Discussion

The fluids in our simulations are kept strictly separated by means of a specular reflection in the interface. In
reality interfaces are permeable and particles are free to diffuse across. Interfacial forces, resulting from the
repulsive particle-particle interactions, oppose this motion. At a high interfacial tension, as in Section 8 for
instance, the diffusion of particles across the interface is unlikely to occur. The number of particles that cross
the interface is small and will have little or no effect on the performance of the three multi-viscosity methods
described. However, this number will increase when the interfacial tension becomes weaker, making the inter-
face diffuse and fluids impure, until the fluids are perfectly mixed. If, and how, this affects the performance of
the methods is at present unclear and subject to further investigation.

In the mesoscopic simulation technique applied here the viscosity is controlled by the dissipative forces be-
tween the fluid particles. Several particle-based techniques exist that use similar or related forces. A good
example is the alternative approach to DPD introduced by Lowe [21]. In this technique, the pairwise stochastic
and dissipative interactions are replaced by pairwise thermal bath collisions, relaxing the system to equilib-
rium. These bath collisions occur with a certain probability C, a quantity of the same physical meaning as
the friction factor c in DPD. It is important to note that the relation of C and c with viscosity is similar. It
implies that the multi-viscosity methods described will also be applicable to this alternative DPD model, sim-
ply by replacing c with C. Thus, the three methods introduced here for DPD can be useful in other techniques
as well.

10. Conclusion

In this paper, we aim at modelling multiple viscosities in a single DPD system. To this end a system with
two fluids of different viscosity is studied. This two-viscosity test case requires the definition of three friction
factors. Two for the interactions between identical particles, directly related to the fluid�s viscosity, and one for
the interaction between unlike particles. We demonstrated that accurate modelling of such a multi-
viscosity system strongly depends on this last, unlike friction factor.

Three methods are presented here to define the unlike friction factor. The first method is based on the ana-
lytical solution of the fully developed velocity profile and yields a kind of lever rule. Excellent agreement is
found between analytical and simulated velocity profiles when this lever rule is employed for stationary peri-
odic Poiseuille flow of adjacent immiscible fluids. An undesirable aspect of the lever rule is that it requires the
analytical solution, meaning it is of limited use in practice. A good alternative in this respect is the constant
gradient method that gives a relation for the friction factor by assuming a linear velocity profile near the inter-
face. A drawback of this second method is, however, that it requires the position of the interface. The third
method calculates the unlike friction factor from the harmonic mean of the friction factors of the pure fluids
and is, thus, independent of the whereabouts of the interface. This method is, therefore, readily applicable to
complex multiphase flows.

Since the methods are derived for the dynamic regime where dissipative forces dominate, one should check
the reliability when this condition is violated. We found that all three methods produce acceptable results in
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the collective dynamic regime lD/l P 0.85. Furthermore, the methods stay reliable at high viscosity differ-
ences and appeared to work just as well for time-dependent as stationary flow. As a final test, the methods
are applied to a system containing an interface with interfacial tension. Although this alters the dynamic prop-
erties at the interface and affects the flow considerably, all three methods yield the correct velocity distribution.
This proves that the methods introduced give an appropriate value for the unlike friction factor and make
reliable modelling of multi-viscosity systems with DPD possible.
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[10] P. Español, P.B. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. 30 (1995) 191–196.
[11] C.A. Marsh, G. Backx, M.H. Ernst, Fokker–Planck–Boltzmann equation for dissipative particle dynamics, Europhys. Lett. 38 (1997)

411–415.
[12] I. Pagonabarraga, M.H.J. Hagen, D. Frenkel, Self-consistent dissipative particle dynamics algorithm, Europhys. Lett. 42 (1998) 377–

382.
[13] A.J. Masters, P.B. Warren, Kinetic theory for dissipative particle dynamics: the importance of collisions, Europhys. Lett. 48 (1999) 1–

7.
[14] S.M. Willemsen, H.C.J. Hoefsloot, P.D. Iedema, No-slip boundary condition in dissipative particle dynamics, Int. J. Mod. Phys. C 11

(2000) 881–890.
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